Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.653
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731813

RESUMO

Increased expression and nuclear translocation of ß-CATENIN is frequently observed in breast cancer, and it correlates with poor prognosis. Current treatment strategies targeting ß-CATENIN are not as efficient as desired. Therefore, detailed understanding of ß-CATENIN regulation is crucial. Bone morphogenetic proteins (BMP) and Wingless/Integrated (WNT) pathway crosstalk is well-studied for many cancer types including colorectal cancer, whereas it is still poorly understood for breast cancer. Analysis of breast cancer patient data revealed that BMP2 and BMP6 were significantly downregulated in tumors. Since mutation frequency in genes enhancing ß-CATENIN protein stability is relatively low in breast cancer, we aimed to investigate whether decreased BMP ligand expression could contribute to a high protein level of ß-CATENIN in breast cancer cells. We demonstrated that downstream of BMP stimulation, SMAD4 is required to reduce ß-CATENIN protein stability through the phosphorylation in MCF7 and T47D cells. Consequently, BMP stimulation reduces ß-CATENIN levels and prevents its nuclear translocation and target gene expression in MCF7 cells. Conversely, BMP stimulation has no effect on ß-CATENIN phosphorylation or stability in MDA-MB-231 and MDA-MB-468 cells. Likewise, SMAD4 modulation does not alter the response of those cells, indicating that SMAD4 alone is insufficient for BMP-induced ß-CATENIN phosphorylation. While our data suggest that considering BMP activity may serve as a prognostic marker for understanding ß-CATENIN accumulation risk, further investigation is needed to elucidate the differential responsiveness of breast cancer cell lines.


Assuntos
Neoplasias da Mama , Estabilidade Proteica , beta Catenina , Humanos , beta Catenina/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Fosforilação , Feminino , Linhagem Celular Tumoral , Proteína Smad4/metabolismo , Proteína Smad4/genética , Regulação Neoplásica da Expressão Gênica , Células MCF-7 , Proteínas Morfogenéticas Ósseas/metabolismo , Proteína Morfogenética Óssea 2/metabolismo
2.
Front Endocrinol (Lausanne) ; 15: 1392675, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711986

RESUMO

Obesity and Type 2 Diabetes Mellitus (T2DM) are intricate metabolic disorders with a multifactorial etiology, often leading to a spectrum of complications. Recent research has highlighted the impact of these conditions on bone health, with a particular focus on the role of sclerostin (SOST), a protein molecule integral to bone metabolism. Elevated circulating levels of SOST have been observed in patients with T2DM compared to healthy individuals. This study aims to examine the circulating levels of SOST in a multiethnic population living in Kuwait and to elucidate the relationship between SOST levels, obesity, T2DM, and ethnic background. The study is a cross-sectional analysis of a large cohort of 2083 individuals living in Kuwait. The plasma level of SOST was measured using a bone panel multiplex assay. The study found a significant increase in SOST levels in individuals with T2DM (1008.3 pg/mL, IQR-648) compared to non-diabetic individuals (710.6 pg/mL, IQR-479). There was a significant gender difference in median SOST levels, with males exhibiting higher levels than females across various covariates (diabetes, IR, age, weight, and ethnicity). Notably, SOST levels varied significantly with ethnicity: Arabs (677.4 pg/mL, IQR-481.7), South Asians (914.6 pg/mL, IQR-515), and Southeast Asians (695.2 pg/mL, IQR-436.8). Furthermore, SOST levels showed a significant positive correlation with gender, age, waist circumference, systolic and diastolic blood pressure, fasting blood glucose, HbA1c, insulin, total cholesterol, triglycerides, HDL, LDL, ALT, and AST (p-Value ≥0.05). South Asian participants, who exhibited the highest SOST levels, demonstrated the most pronounced associations, even after adjusting for age, gender, BMI, and diabetes status (p-Value ≥0.05). The observed correlations of SOST with various clinical parameters suggest its significant role in the diabetic milieu, particularly pronounced in the South Asian population compared to other ethnic groups.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Diabetes Mellitus Tipo 2 , Obesidade , Humanos , Masculino , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/etnologia , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Kuweit/epidemiologia , Pessoa de Meia-Idade , Estudos Transversais , Obesidade/sangue , Obesidade/etnologia , Obesidade/epidemiologia , Proteínas Adaptadoras de Transdução de Sinal/sangue , Marcadores Genéticos , Adulto , Idoso , Etnicidade , Biomarcadores/sangue , Proteínas Morfogenéticas Ósseas/sangue
3.
J Cell Biol ; 223(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748250

RESUMO

Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.


Assuntos
Plasticidade Neuronal , Transdução de Sinais , Proteínas rap1 de Ligação ao GTP , Animais , Plasticidade Neuronal/fisiologia , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas rap1 de Ligação ao GTP/genética , Terminações Pré-Sinápticas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Proteínas Proto-Oncogênicas c-vav/genética , Camundongos , AMP Cíclico/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Complexo Shelterina/metabolismo
4.
Cardiovasc Diabetol ; 23(1): 160, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715043

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a crucial complication of long-term chronic diabetes that can lead to myocardial hypertrophy, myocardial fibrosis, and heart failure. There is increasing evidence that DCM is associated with pyroptosis, a form of inflammation-related programmed cell death. Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor ß superfamily, which regulates oxidative stress, inflammation, and cell survival to mitigate myocardial hypertrophy, myocardial infarction, and vascular injury. However, the role of GDF11 in regulating pyroptosis in DCM remains to be elucidated. This research aims to investigate the role of GDF11 in regulating pyroptosis in DCM and the related mechanism. METHODS AND RESULTS: Mice were injected with streptozotocin (STZ) to induce a diabetes model. H9c2 cardiomyocytes were cultured in high glucose (50 mM) to establish an in vitro model of diabetes. C57BL/6J mice were preinjected with adeno-associated virus 9 (AAV9) intravenously via the tail vein to specifically overexpress myocardial GDF11. GDF11 attenuated pyroptosis in H9c2 cardiomyocytes after high-glucose treatment. In diabetic mice, GDF11 alleviated cardiomyocyte pyroptosis, reduced myocardial fibrosis, and improved cardiac function. Mechanistically, GDF11 inhibited pyroptosis by preventing inflammasome activation. GDF11 achieved this by specifically binding to apoptosis-associated speck-like protein containing a CARD (ASC) and preventing the assembly and activation of the inflammasome. Additionally, the expression of GDF11 during pyroptosis was regulated by peroxisome proliferator-activated receptor α (PPARα). CONCLUSION: These findings demonstrate that GDF11 can treat diabetic cardiomyopathy by alleviating pyroptosis and reveal the role of the PPARα-GDF11-ASC pathway in DCM, providing ideas for new strategies for cardioprotection.


Assuntos
Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas , Fibrose , Fatores de Diferenciação de Crescimento , Inflamassomos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Piroptose , Transdução de Sinais , Animais , Piroptose/efeitos dos fármacos , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/prevenção & controle , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Linhagem Celular , Inflamassomos/metabolismo , Masculino , Fatores de Diferenciação de Crescimento/metabolismo , Ratos , Glicemia/metabolismo , Camundongos , Glucose/metabolismo , Glucose/toxicidade , Proteínas Morfogenéticas Ósseas , PPAR alfa
5.
Elife ; 122024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690987

RESUMO

Elastic cartilage constitutes a major component of the external ear, which functions to guide sound to the middle and inner ears. Defects in auricle development cause congenital microtia, which affects hearing and appearance in patients. Mutations in several genes have been implicated in microtia development, yet, the pathogenesis of this disorder remains incompletely understood. Here, we show that Prrx1 genetically marks auricular chondrocytes in adult mice. Interestingly, BMP-Smad1/5/9 signaling in chondrocytes is increasingly activated from the proximal to distal segments of the ear, which is associated with a decrease in chondrocyte regenerative activity. Ablation of Bmpr1a in auricular chondrocytes led to chondrocyte atrophy and microtia development at the distal part. Transcriptome analysis revealed that Bmpr1a deficiency caused a switch from the chondrogenic program to the osteogenic program, accompanied by enhanced protein kinase A activation, likely through increased expression of Adcy5/8. Inhibition of PKA blocked chondrocyte-to-osteoblast transformation and microtia development. Moreover, analysis of single-cell RNA-seq of human microtia samples uncovered enriched gene expression in the PKA pathway and chondrocyte-to-osteoblast transformation process. These findings suggest that auricle cartilage is actively maintained by BMP signaling, which maintains chondrocyte identity by suppressing osteogenic differentiation.


Assuntos
Condrócitos , Microtia Congênita , Proteínas Quinases Dependentes de AMP Cíclico , Transdução de Sinais , Animais , Condrócitos/metabolismo , Microtia Congênita/genética , Microtia Congênita/metabolismo , Camundongos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Humanos , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Condrogênese/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética
6.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673844

RESUMO

This study aimed to examine minimodeling-based bone formation between the epiphyses and metaphyses of the long bones of eldecalcitol (ELD)-administered ovariectomized rats. Sixteen-week-old female rats were divided into four groups: sham-operated rats receiving vehicle (Sham group), ovariectomized (OVX) rats receiving vehicle (Vehicle group), or ELDs (30 or 90 ng/kg BW, respectively; ELD30 and ELD90 groups). ELD administration increased bone volume and trabecular thickness, reducing the number of osteoclasts in both the epiphyses and metaphyses of OVX rats. The Sham and Vehicle groups exhibited mainly remodeling-based bone formation in both regions. The epiphyses of the ELD groups showed a significantly higher frequency of minimodeling-based bone formation than remodeling-based bone formation. In contrast, the metaphyses exhibited significantly more minimodeling-based bone formation in the ELD90 group compared with the ELD30 group. However, there was no significant difference between minimodeling-based bone formation and remodeling-based bone formation in the ELD90 group. While the minimodeling-induced new bone contained few sclerostin-immunoreactive osteocytes, the underlying pre-existing bone harbored many. The percentage of sclerostin-positive osteocytes was significantly reduced in the minimodeling-induced bone in the epiphyses but not in the metaphyses of the ELD groups. Thus, it seems likely that ELD could induce minimodeling-based bone formation in the epiphyses rather than in the metaphyses, and that ELD-driven minimodeling may be associated with the inhibition of sclerostin synthesis.


Assuntos
Marcadores Genéticos , Osteogênese , Vitamina D , Vitamina D/análogos & derivados , Animais , Feminino , Ratos , Osteogênese/efeitos dos fármacos , Vitamina D/farmacologia , Ovariectomia , Epífises/efeitos dos fármacos , Epífises/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Remodelação Óssea/efeitos dos fármacos , Ratos Sprague-Dawley , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos/metabolismo , Osso e Ossos/efeitos dos fármacos
7.
Eur J Pharmacol ; 973: 176574, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38642670

RESUMO

Osteoporosis is a multifaceted skeletal disorder characterized by reduced bone mass and structural deterioration, posing a significant public health challenge, particularly in the elderly population. Treatment strategies for osteoporosis primarily focus on inhibiting bone resorption and promoting bone formation. However, the effectiveness and limitations of current therapeutic approaches underscore the need for innovative methods. This review explores emerging molecular targets within crucial signaling pathways, including wingless/integrated (WNT), bone morphogenetic protein (BMP), hedgehog (HH), and Notch signaling pathway, to understand their roles in osteogenesis regulation. The identification of crosstalk targets between these pathways further enhances our comprehension of the intricate bone metabolism cycle. In summary, unraveling the molecular complexity of osteoporosis provides insights into potential therapeutic targets beyond conventional methods, offering a promising avenue for the development of new anabolic drugs.


Assuntos
Osteogênese , Osteoporose , Transdução de Sinais , Humanos , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Animais , Osteogênese/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Hedgehog/metabolismo , Terapia de Alvo Molecular , Receptores Notch/metabolismo
8.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612467

RESUMO

Both bone morphogenetic protein 2 (BMP-2) and abaloparatide are used to promote bone formation. However, there is no consensus about their optimal administration. We investigated the optimal administration theory for the pairing of BMP-2 and abaloparatide in a rat spinal fusion model. Group I was only implanted in carriers and saline. Carriers with 3 µg of recombinant human BMP-2 (rhBMP-2) were implanted in other groups. Abaloparatide injections were administered three times a week for group III (for a total amount of 120 µg/kg in a week) and six times a week for group IV (for a total amount of 120 µg/kg in a week) after surgery. They were euthanized 8 weeks after the surgery, and we explanted their spines at that time. We assessed them using manual palpation tests, radiography, high-resolution micro-computed tomography (micro-CT), and histological analysis. We also analyzed serum bone metabolism markers. The fusion rate in Groups III and IV was higher than in Group I, referring to the manual palpation tests. Groups III and IV recorded greater radiographic scores than those in Groups I and II, too. Micro-CT analysis showed that Tbs. Sp in Groups III and IV was significantly lower than in Group I. Tb. N in Group IV was significantly higher than in Group I. Serum marker analysis showed that bone formation markers were higher in Groups III and IV than in Group I. On the other hand, bone resorption markers were lower in Group IV than in Group I. A histological analysis showed enhanced trabecular bone osteogenesis in Group IV. Frequent administration of abaloparatide may be suitable for the thickening of trabecular bone structure and the enhancement of osteogenesis in a rat spinal fusion model using BMP-2 in insufficient doses.


Assuntos
Osteogênese , Proteína Relacionada ao Hormônio Paratireóideo , Fusão Vertebral , Humanos , Animais , Ratos , Microtomografia por Raio-X , Proteínas Morfogenéticas Ósseas
9.
Methods Mol Biol ; 2803: 13-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38676882

RESUMO

The adept and systematic differentiation of embryonic stem cells (ESCs) and human-induced pluripotent stem cells (hiPSCs) to diverse lineage-prone cell types involves crucial step-by-step process that mimics the vital strategic commitment phase that is usually observed during the process of embryo development. The development of precise tissue-specific cell types from these stem cells indeed plays an important role in the advancement of imminent stem cell-based therapeutic strategies. Therefore, the usage of hiPSC-derived cell types for subsequent cardiovascular disease modeling, drug screening, and therapeutic drug development undeniably entails an in-depth understanding of each and every step to proficiently stimulate these stem cells into desired cardiomyogenic lineage. Thus, to accomplish this definitive and decisive fate, it is essential to efficiently induce the mesoderm or pre-cardiac mesoderm, succeeded by the division of cells into cardiovascular and ultimately ensuing with the cardiomyogenic lineage outcome. This usually commences from the earliest phases of pluripotent cell induction. In this chapter, we discuss our robust and reproducible step-wise protocol that will describe the subtype controlled, precise lineage targeted standardization of activin/nodal, and BMP signaling molecules/cytokines, for the efficient differentiation of ventricular cardiomyocytes from hiPSCs via the embryoid body method. In addition, we also describe techniques to dissociate hiPSCs, hiPSC-derived early cardiomyocytes for mesoderm and pre-cardiac mesoderm assessment, and hiPSC-derived cardiomyocytes for early and mature markers assessment.


Assuntos
Ativinas , Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Linhagem da Célula , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Transdução de Sinais , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Ativinas/farmacologia , Ativinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proteína Nodal/metabolismo , Técnicas de Cultura de Células/métodos
10.
Arch Oral Biol ; 162: 105962, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569446

RESUMO

OBJECTIVE: This study assessed the impact of an anti-sclerostin monoclonal antibody (Scl-Ab)-based osteoporosis drug on the post-extraction alveolar repair of ovariectomized rats. DESIGN: Fifteen female rats were randomly distributed into three groups: CTR (healthy animals), OST (osteoporosis induced by ovariectomy), and OST+Scl-Ab (osteoporosis induction followed by Scl-Ab treatment). Ovariectomy or sham surgery was performed 30 days before baseline, and Scl-Ab or a vehicle was administered accordingly in the groups. After seven days, all rats underwent the first lower molar extraction and were euthanized 15 days later. Computed microtomography, histological analysis, and collagen content measurement were performed on post-extraction sockets and intact mandibular and maxillary bone areas. RESULTS: Microtomographic analyses of the sockets and mandibles did not reveal significant differences between groups on bone morphometric parameters (p > 0.05), while maxillary bone analyses resulted in better maintenance of bone architecture in OST+Scl-Ab, compared to OST (p < 0.05). Descriptive histological analysis and polarization microscopy indicated better post-extraction socket repair characteristics and collagen content in OST+Scl-Ab compared to OST (p < 0.05). CONCLUSIONS: Scl-Ab-based medication did not accelerate alveolar bone formation but exhibited better post-extraction repair characteristics, and collagen content compared to ovariectomized animals only.


Assuntos
Proteínas Morfogenéticas Ósseas , Osteoporose , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Marcadores Genéticos , Anticorpos Monoclonais/farmacologia , Colágeno
11.
J Agric Food Chem ; 72(17): 9691-9702, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38639219

RESUMO

Marine biodiversity offers a wide array of active ingredient resources. Gadus morhua peptides (GMPs) showed excellent osteoprotective effects in ovariectomized mice. However, the potential osteogenesis mechanisms of key osteogenic peptides in GMP were seldom reported. In this study, a novel osteogenic peptide (GETNPADSKPGSIR, P-GM-2) was screened from GMP. P-GM-2 has a high stability coefficient and a strong interaction with epidermal growth factor receptor. Cell culture experiments showed that P-GM-2 stimulated the expression of osteogenic differentiation markers to promote osteoblast proliferation, differentiation, and mineralization. Additionally, P-GM-2 phosphorylates GSK-3ß, leading to the stabilization of ß-catenin and its translocation to the nucleus, thus initiating the activation of the Wnt/ß-catenin signaling pathway. Meanwhile, P-GM-2 could also regulate the osteogenic differentiation of preosteoblasts by triggering the BMP/Smad and mitogen-activated protein kinase signaling pathways. Further validation with specific inhibitors (ICG001 and Noggin) demonstrated that the osteogenic activity of P-GM-2 was revealed by the activation of the BMP and Wnt/ß-catenin pathways. In summary, these results provide theoretical and practical insights into P-GM-2 as an effective antiosteoporosis active ingredient.


Assuntos
Diferenciação Celular , Osteoblastos , Osteogênese , Peptídeos , Via de Sinalização Wnt , beta Catenina , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoblastos/citologia , Animais , Diferenciação Celular/efeitos dos fármacos , Camundongos , Osteogênese/efeitos dos fármacos , beta Catenina/metabolismo , beta Catenina/genética , Via de Sinalização Wnt/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Transdução de Sinais/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
12.
Dev Cell ; 59(9): 1132-1145.e6, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38531357

RESUMO

Neurons must be made in the correct proportions to communicate with the appropriate synaptic partners and form functional circuits. In the Drosophila visual system, multiple subtypes of distal medulla (Dm) inhibitory interneurons are made in distinct, reproducible numbers-from 5 to 800 per optic lobe. These neurons are born from a crescent-shaped neuroepithelium called the outer proliferation center (OPC), which can be subdivided into specific domains based on transcription factor and growth factor expression. We fate mapped Dm neurons and found that more abundant neural types are born from larger neuroepithelial subdomains, while less abundant subtypes are born from smaller ones. Additionally, morphogenetic Dpp/BMP signaling provides a second layer of patterning that subdivides the neuroepithelium into smaller domains to provide more granular control of cell proportions. Apoptosis appears to play a minor role in regulating Dm neuron abundance. This work describes an underappreciated mechanism for the regulation of neuronal stoichiometry.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Neurônios , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurônios/metabolismo , Neurônios/citologia , Drosophila melanogaster/metabolismo , Lobo Óptico de Animais não Mamíferos/metabolismo , Lobo Óptico de Animais não Mamíferos/citologia , Transdução de Sinais , Vias Visuais/metabolismo , Apoptose , Proteínas Morfogenéticas Ósseas/metabolismo , Padronização Corporal , Interneurônios/metabolismo , Interneurônios/citologia , Regulação da Expressão Gênica no Desenvolvimento , Contagem de Células , Proliferação de Células , Neurogênese/fisiologia
13.
J Neurooncol ; 167(3): 455-465, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38446374

RESUMO

PURPOSE: Meningiomas are the most common type of brain tumors and are generally benign, but malignant atypical meningiomas and anaplastic meningiomas frequently recur with poor prognosis. The metabolism of meningiomas is little known, so few effective treatment options other than surgery and radiation are available, and the targets for treatment of recurrence are not well defined. The Aim of this paper is to find the therapeutic target. METHODS: The effects of bone morphogenetic protein (BMP) signal inhibitor (K02288) and upstream regulator Gremlin2 (GREM2) on meningioma's growth and senescence were examined. In brief, we examined as follows: 1) Proliferation assay by inhibiting BMP signaling. 2) Comprehensive analysis of forced expression GREM2.3) Correlation between GREM2 mRNA expression and proliferation marker in 87 of our clinical samples. 4) Enrichment analysis between GREM2 high/low expressed groups using RNA-seq data (42 cases) from the public database GREIN. 5) Changes in metabolites and senescence markers associated with BMP signal suppression. RESULTS: Inhibitors of BMP receptor (BMPR1A) and forced expression of GREM2 shifted tryptophan metabolism from kynurenine/quinolinic acid production to serotonin production in malignant meningiomas, reduced NAD + /NADH production, decreased gene cluster expression involved in oxidative phosphorylation, and caused decrease in ATP. Finally, malignant meningiomas underwent cellular senescence, decreased proliferation, and eventually formed psammoma bodies. Reanalyzed RNA-seq data of clinical samples obtained from GREIN showed that increased expression of GREM2 decreased the expression of genes involved in oxidative phosphorylation, similar to our experimental results. CONCLUSIONS: The GREM2-BMPR1A-tryptophan metabolic pathway in meningiomas is a potential new therapeutic target.


Assuntos
Proteínas Morfogenéticas Ósseas , Calcinose , Neoplasias Meníngeas , Meningioma , Transdução de Sinais , Humanos , Meningioma/metabolismo , Meningioma/patologia , Meningioma/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Calcinose/patologia , Calcinose/metabolismo , Calcinose/genética , Proliferação de Células , Senescência Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética
14.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474297

RESUMO

Diabetic retinopathy (DR), a prevalent complication of diabetes mellitus affecting a significant portion of the global population, has long been viewed primarily as a microvascular disorder. However, emerging evidence suggests that it should be redefined as a neurovascular disease with multifaceted pathogenesis rooted in oxidative stress and advanced glycation end products. The transforming growth factor-ß (TGF-ß) signaling family has emerged as a major contributor to DR pathogenesis due to its pivotal role in retinal vascular homeostasis, endothelial cell barrier function, and pericyte differentiation. However, the precise roles of TGF-ß signaling in DR remain incompletely understood, with conflicting reports on its impact in different stages of the disease. Additionally, the BMP subfamily within the TGF-ß superfamily introduces further complexity, with BMPs exhibiting both pro- and anti-angiogenic properties. Furthermore, TGF-ß signaling extends beyond the vascular realm, encompassing immune regulation, neuronal survival, and maintenance. The intricate interactions between TGF-ß and reactive oxygen species (ROS), non-coding RNAs, and inflammatory mediators have been implicated in the pathogenesis of DR. This review delves into the complex web of signaling pathways orchestrated by the TGF-ß superfamily and their involvement in DR. A comprehensive understanding of these pathways may hold the key to developing targeted therapies to halt or mitigate the progression of DR and its devastating consequences.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Humanos , Retinopatia Diabética/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Transdução de Sinais/fisiologia , Retina/metabolismo , Diabetes Mellitus/metabolismo
15.
Sci Rep ; 14(1): 6724, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509118

RESUMO

The balance between Noggin and bone morphogenetic proteins (BMPs) is important during early development and skeletal regenerative therapies. Noggin binds BMPs in the extracellular space, thereby preventing BMP signaling. However, Noggin may affect cell response not necessarily through the modulation of BMP signaling, raising the possibility of direct Noggin signaling through yet unspecified receptors. Here we show that in osteogenic cultures of adipose-derived stem cells (ASCs), Noggin activates fibroblast growth factor receptors (FGFRs), Src/Akt and ERK kinases, and it stabilizes TAZ proteins in the presence of dexamethasone. Overall, this leads ASCs to increased expression of osteogenic markers and robust mineral deposition. Our results also indicate that Noggin can induce osteogenic genes expression in normal human bone marrow stem cells and alkaline phosphatase activity in normal human dental pulp stem cells. Besides, Noggin can specifically activate FGFR2 in osteosarcoma cells. We believe our findings open new research avenues to further explore the involvement of Noggin in cell fate modulation by FGFR2/Src/Akt/ERK signaling and potential applications of Noggin in bone regenerative therapies.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Proteína Morfogenética Óssea 2/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular , Células Cultivadas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Proteínas de Transporte/metabolismo
16.
Biomolecules ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540737

RESUMO

Bone morphogenetic protein (BMP) and platelet-derived growth factor (PDGF) are known to regulate/stimulate osteogenesis, playing vital roles in bone homeostasis, rendering them strong candidates for osteoporosis treatment. We evaluated the effects of recombinant human BMP-7 (rhBMP7) and PDGF-BB (rhPDGF-BB) in an oophorectomy-induced osteoporosis rat model. Forty Sprague Dawley rats underwent oophorectomy surgery; treatments commenced on the 100th day post-surgery when all animals exhibited signs of osteoporosis. These peptide growth factors were administered intraocularly (iv) once or twice a week and the animals were monitored for a total of five weeks. Two weeks after the conclusion of the treatments, the animals were euthanized and tissues were collected for assessment of alkaline phosphatase, X-ray, micro-CT, and histology. The results indicate that the most promising treatments were 20 µg/kg rhPDGF-BB + 30 µg/kg rhBMP-7 twice a week and 30 µg/kg BMP-7 twice a week, showing significant increases of 15% (p < 0.05) and 13% (p < 0.05) in bone volume fraction and 21% (p < 0.05) and 23% (p < 0.05) in trabecular number, respectively. In conclusion, rhPDGF-BB and rhBMP-7 have demonstrated the ability to increase bone volume and density in this osteoporotic animal model, establishing them as potential candidates for osteoporosis treatment.


Assuntos
Proteína Morfogenética Óssea 7 , Osteoporose , Humanos , Ratos , Animais , Becaplermina/farmacologia , Proteínas Proto-Oncogênicas c-sis/farmacologia , Proteínas Proto-Oncogênicas c-sis/uso terapêutico , Proteína Morfogenética Óssea 7/farmacologia , Proteína Morfogenética Óssea 7/uso terapêutico , Ratos Sprague-Dawley , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Proteínas Morfogenéticas Ósseas , Osteoporose/tratamento farmacológico , Proteína Morfogenética Óssea 2
17.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542334

RESUMO

The BMP pathway is one of the major signaling pathways in embryonic development, ontogeny and homeostasis, identified many years ago by pioneers in developmental biology. Evidence of the deregulation of its activity has also emerged in many cancers, with complex and sometimes opposing effects. Recently, its role has been suspected in Diffuse Midline Gliomas (DMG), among which Diffuse Intrinsic Pontine Gliomas (DIPG) are one of the most complex challenges in pediatric oncology. Genomic sequencing has led to understanding part of their molecular etiology, with the identification of histone H3 mutations in a large proportion of patients. The epigenetic remodeling associated with these genetic alterations has also been precisely described, creating a permissive context for oncogenic transcriptional program activation. This review aims to describe the new findings about the involvement of BMP pathway activation in these tumors, placing their appearance in a developmental context. Targeting the oncogenic synergy resulting from this pathway activation in an H3K27M context could offer new therapeutic perspectives based on targeting treatment-resistant cell states.


Assuntos
Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Criança , Glioma/metabolismo , Histonas/metabolismo , Glioma Pontino Intrínseco Difuso/genética , Glioma Pontino Intrínseco Difuso/metabolismo , Glioma Pontino Intrínseco Difuso/patologia , Mutação , Transdução de Sinais , Proteínas Morfogenéticas Ósseas/metabolismo
18.
J Cell Mol Med ; 28(7): e18140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38494851

RESUMO

Growth differentiation factor 11 (GDF11), also known as bone morphogenetic protein 11 (BMP11), has been identified as a key player in various biological processes, including embryonic development, aging, metabolic disorders and cancers. GDF11 has also emerged as a critical component in liver development, injury and fibrosis. However, the effects of GDF11 on liver physiology and pathology have been a subject of debate among researchers due to conflicting reported outcomes. While some studies suggest that GDF11 has anti-aging properties, others have documented its senescence-inducing effects. Similarly, while GDF11 has been implicated in exacerbating liver injury, it has also been shown to have the potential to reduce liver fibrosis. In this narrative review, we present a comprehensive report of recent evidence elucidating the diverse roles of GDF11 in liver development, hepatic injury, regeneration and associated diseases such as non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), liver fibrosis and hepatocellular carcinoma. We also explore the therapeutic potential of GDF11 in managing various liver pathologies.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fibrose , Cirrose Hepática/patologia , Fatores de Diferenciação de Crescimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Hepáticas/patologia
19.
Cell Commun Signal ; 22(1): 158, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439036

RESUMO

BACKGROUND: BMP9 and BMP10 are two major regulators of vascular homeostasis. These two ligands bind with high affinity to the endothelial type I kinase receptor ALK1, together with a type II receptor, leading to the direct phosphorylation of the SMAD transcription factors. Apart from this canonical pathway, little is known. Interestingly, mutations in this signaling pathway have been identified in two rare cardiovascular diseases, hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension. METHODS: To get an overview of the signaling pathways modulated by BMP9 and BMP10 stimulation in endothelial cells, we employed an unbiased phosphoproteomic-based strategy. Identified phosphosites were validated by western blot analysis and regulated targets by RT-qPCR. Cell cycle analysis was analyzed by flow cytometry. RESULTS: Large-scale phosphoproteomics revealed that BMP9 and BMP10 treatment induced a very similar phosphoproteomic profile. These BMPs activated a non-canonical transcriptional SMAD-dependent MAPK pathway (MEKK4/P38). We were able to validate this signaling pathway and demonstrated that this activation required the expression of the protein GADD45ß. In turn, activated P38 phosphorylated the heat shock protein HSP27 and the endocytosis protein Eps15 (EGF receptor pathway substrate), and regulated the expression of specific genes (E-selectin, hyaluronan synthase 2 and cyclooxygenase 2). This study also highlighted the modulation in phosphorylation of proteins involved in transcriptional regulation (phosphorylation of the endothelial transcription factor ERG) and cell cycle inhibition (CDK4/6 pathway). Accordingly, we found that BMP10 induced a G1 cell cycle arrest and inhibited the mRNA expression of E2F2, cyclinD1 and cyclinA1. CONCLUSIONS: Overall, our phosphoproteomic screen identified numerous proteins whose phosphorylation state is impacted by BMP9 and BMP10 treatment, paving the way for a better understanding of the molecular mechanisms regulated by BMP signaling in vascular diseases.


Assuntos
Proteínas Morfogenéticas Ósseas , Células Endoteliais , Pontos de Checagem do Ciclo Celular , Fosforilação , Pontos de Checagem da Fase G1 do Ciclo Celular
20.
Sci Rep ; 14(1): 6524, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38499638

RESUMO

Wnt signaling is critically involved in fracture healing. Existing data predominantly relies on rodent models. Here, we explored local and circulating Dickkopf-1 (DKK1) levels in patients with respect to fracture healing and explore its association to sclerostin (SOST). 69 patients after surgical stabilization of long bone fractures of which six patients had impaired fracture healing were included in this study. Life-style and patient related factors with a known effect on DKK1 and SOST were recorded. DKK1 and SOST concentrations were measured using enzyme-linked immunosorbent assay (ELISA) at the fracture site and in circulation. DKK1 and SOST showed a close inverse correlation. In fracture hematoma and immediately after trauma DKK1 levels were significantly reduced while SOST levels were significantly increased, compared to healthy control. Postoperatively, DKK1 peaked at week 2 and SOST at week 8, again demonstrating a close negative correlation. Age and smoking status affected the balance of DKK1 and SOST, while type 2 diabetes and sex did not demonstrate a significant influence. Early postoperative elevation of SOST without compensatory DKK1 decrease was associated with fracture non-union in younger patients (< 50a). The close inverse correlation and very rapid dynamics of DKK1 and SOST locally as well as systemically suggest their critical involvement during human fracture healing. Importantly, as immediate compensatory feedback mechanism are apparent, we provide evidence that dual-blockade of DKK1 and SOST could be critical to allow for therapeutic efficiency of Wnt targeted therapies for fracture healing.


Assuntos
Diabetes Mellitus Tipo 2 , Fraturas Ósseas , Humanos , Proteínas Morfogenéticas Ósseas/genética , Consolidação da Fratura , Marcadores Genéticos , Peptídeos e Proteínas de Sinalização Intercelular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...